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a b s t r a c t

A recently introduced seeded dimension reduction approach enables existing sufficient
dimension reduction methods to be used in regressions with n < p. The dimension
reduction is accomplished through successive projections of seedmatrices on a subspace to
contain the central subspace. In the article, we will develop a seeded dimension reduction
for multivariate regression, whose responses are multi-dimensional. For this we suggest
two conditions that the dimension reduction is attained without the loss of information
of the central subspace. Based on this, we construct possible candidate seed matrices.
Numerical studies and two data analyses are presented.

© 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction (SDR) in the univariate regression of Y ∈ R1
|X ∈ Rp reduces the dimension of the original

predictors X through a lower-dimensional linear projection predictor without loss of information about the conditional
distribution of Y|X such that

YyX|αTX, (1)

where y stands for independence and q ≤ p.
Statement (1) is equivalently rephrased that the conditional distributions of Y |X and Y |αTX are the same, and hence

the dimension reduction of X through αTX is achieved without loss of information about Y |X. A subspace spanned by the
columns of such α is called a dimension reduction subspace, and SDR typically seeks for the intersection of all dimension
reduction subspaces, which is called the central subspace SY |X. The true dimension and an orthonormal basis matrix of SY |X
will be denoted as d and η ∈ Rp×d, respectively. And the dimension reduced predictor of ηTX is called sufficient predictors.

For the multivariate regression of Y ∈ Rr
|X ∈ Rp, the idea of SDR is the same as univariate regression, and the central

subspace is defined accordingly. To recover SY|X, two popular approaches of inverse regression and forward regression
are widely used. The inverse regression-based methods construct a subspace spanned by the conditional moments of the
inverse regression of X|Y. Methods of K -means inverse regression (Setodji & Cook, 2004) and K -means average variance
estimation (Yoo, Lee, & Wu, 2010) estimate SY|X through investigating E(X|Y) and cov(X|Y) respectively. In the inverse
regression approach, the range of Y into h clusters through the K -means clustering algorithm, called slicing, is the key-step
for methodological implementation.

For the lattermethod, Yoo and Cook (2007) developed amethod done by usual ordinary least squares (OLS) application in
the regression of Y|X such thatβ = 6−1cov(X, Y), where6 = cov(X). To recovermore information on SY|X through the OLS,
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Yoo (2008) proposed a method to utilize information from polynomial regression of (Y, Y2, . . . , Yk)|X through constructing
β(k) = 6−1cov{X, (Y, Y2, . . . , Yk)}, where Yk

= (Y k
1 , . . . , Y

k
r ).

In order that subspaces spanned by E(X|Y), cov(X|Y), β, andβ(k) are proper subsets of SY|X or equal to SY|X, the following
condition is required: E(X|ηTX) is linear in ηTX. This condition is call linearity condition, which is very common in the SDR
literature. Since the linearity condition is for that of the marginal distribution of X, it is much weaker than a modeling
condition usually imposed in Y|X. Elliptically contoured distributions ofX guarantee that the condition holds. If the linearity
condition does not hold, the predictors are often power-transformed for normality.

Although the idea of SDR and the introduced SDR methods for multivariate regression do not have limitation for large
p-small nmultivariate regression in theory, its practical implementation is not possible, because the inverse of X is needed
to be computed. Recently Cook, Li, and Chiaromonte (2007) introduced a seeded dimension reduction, which provide a
general paradigm to use existing SDRmethods in such cases. In the seeded dimension reduction, a seedmatrix is successively
projected to recover SY|X. We will discuss this dimension reduction method in detail in later sections.

The purpose of the article is to develop a seeded dimension reduction for multivariate regression, called multivariate
seeded dimension reduction. For this we assume that all information of the regression of Y|X is given in E(Y|X). Based on this,
we construct possible candidate seed matrices and withdraw certain conditions to guarantee that the seed matrices reduce
the dimension of X without loss of information on SY|X.

The article is organized as follows. Section 2 is devoted to explain seeded dimension reduction. We develop multivariate
seeded dimension reduction in Section 3. Numerical studies and twodata analyses are presented in Section 4.We summarize
our work in Section 5.

We will define the notations frequently used throughout the rest of the paper. For B ∈ Rq×p and a subspace S of Rp, BS
and S(B) represent the set of {Bx : x ∈ S} and a subspace spanned by the columns of B, respectively. For a symmetric and
positive definite matrix 6, a 6 inner-product in Rp is defined as ⟨a, b⟩6 = aT6b. An orthogonal projection operator onto
S(B) relative to ⟨a, b⟩6 will be defined as B(BT6B)ĎBT6, where Ď stands for the Moore–Penrose inverse.

2. Seeded dimension reduction

Popular SDR methods, including ones introduced in Section 1, typically require the inversion of 6. When n < p, the
inversion is not possible, and hence practical application is not plausible any more to such regressions. To overcome this
issue in SDR, Cook et al. (2007) proposed a paradigm of sufficient dimension reduction without matrix inversion. To do
this, a p × q seed matrix ν is needed to be defined for a regression of Y ∈ R1

|X ∈ Rp such that S(ν) ⊆ 6SY |X. One
important requirement for the seed matrix is that it should be constructed without inverting 6. To give some examples for
seed matrices, we assume the linearity condition that E(X|ηTX) is linear in ηTX. The linearity condition is common in the
SDR literature. If X has an elliptically contoured distribution, the condition is automatically satisfied. In the case that the
linearity condition does not hold, X can often be one-to-one transformed to satisfy this condition. Hereafter we will assume
that the linearity condition holds, unless stated otherwise. Under the linearity condition, popular choices for seed matrices
are as follows.

2.a When Y is a categorical predictor, E(X|Y = y) − E(X) ∈ 6SY |X for Y = 1, . . . , h.
2.b When Y is many-valued or continuous, the range of Y is divided into h partitions Js(Y ), s = 1, . . . , h so that Js(Y ) = 1,

if Y ∈ Js(Y ) and 0, otherwise. Then E{X|Js(Y ) = 1} − E(X) ∈ 6SY |X.
2.c cov(X, Y ) ∈ 6SY |X.
2.d cov{X,U(k)} ∈ 6SY |X, where U = {Y − E(Y )}/

√
var(Y ) and U(k) = (U,U2, . . . ,Uk), k = 1, 2, . . . .

For simplicity, we will assume that S(ν) = 6SY |X throughout the rest of paper.
For a known subspace MY |X of Rp such that SY |X ⊆ MY |X, it is obvious that 6−1S(ν) ⊆ MY |X. Let PMY |X(6) =

R(RT6R)−1RT6 be an orthogonal projection operator PMY |X(6) onto MY |X relative to ⟨a, b⟩6, where R is a p × q matrix such
that S(R) = MY |X. Since the projection of 6−1ν onto MY |X returns itself, the following equivalences are derived:

6−1ν = PMY |X(6)6
−1ν = R(RT6R)−1RT66−1ν = R(RT6R)−1RTν. (2)

Since 6−1S(ν) = SY |X, the columns of R(RT6R)−1RTν span SY |X by the last equivalence in (2). Here, one crucially notable
thing is that 6−1 is not required in R(RT6R)−1RTν. If RT6R is not invertible, (RT6R)Ď is used instead.

Then, naturally, the matrix R is needed to be constructed so that its column spans a subspace large enough to contain
SY |X but reasonably estimable from data. For this, iterative projections of ν onto 6 were proposed in Cook et al. (2007):

Ru ≡ (ν, 6ν, . . . , 6u−1ν), u = 1, 2, . . . , u∗. (3)

The sufficient dimension reduction through the successive projection of seed matrices is called seeded dimension reduction.
The letter u in (3) is called a termination index of projections. It is noted that S(Ru−1) ⊆ S(Ru) for any u ≥ 2. Since

S(Ru) forms a nondecreasing sequence, it is important to make a proper choice of the termination index u, small enough to
guarantee that S(Ru) = SY |X. Recently Yoo (2013) suggests bootstrap coefficients of variations to determine the termination
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index, which does not require any asymptotics and is implemented in a simpleway. Since the determination is not a purpose
of the paper, readers can refer to Yoo (2013) for more detail.

In practice, first, 6 and ν are replaced by their sample quantities and then a proper value of u, saying u∗, is determined.
Then the sample version R̂u∗ is constructed, and finally SY |X is estimated by the columns of R̂u∗(R̂T

u∗6̂R̂u∗)−1R̂T
u∗ ν̂.

3. Multivariate seeded dimension reduction

Multivariate regression ofY = (Y1, . . . , Yr)
T
|X involvesmulti-dimensional responseswith r ≥ 2. To distinguish between

univariate and multivariate responses, bold fonts are used for multivariate responses Y. The definitions of a dimension
reduction subspace and the central subspace are the same as univariate-response regression. Let SY|X stand for the central
subspace of Y|X.

When considering a seeded dimension reduction in multivariate regression, the most important thing is to find a seed
matrix νM such that S(νM) ⊆ 6SY|X, which should be constructed as simple as possible. As candidates of the seed matrices
for multivariate regression, we consider the following population quantities under the linearity condition.

a. Use only with r = 2, that is, Y = (Y1, Y2). Slice one response Y1 first. Let h(1) be the number of slices for Y1. Construct
h(1,2) slices Js, s = 1, . . . , h(1,2), through dividing another response Y2 within each of h(1) slices. If one of the response is
categorical, then the categorical one should be sliced first. Then νM = E(X|Js) − E(X).

b. Let Ks be a cluster indicator acquired from K -means clustering for s = 1, . . . , h so that Ks = 1, if Y ∈ Ks and 0 otherwise.
Then νM = E(X|Ks) − E(X).

c. νM = cov(X, Y).

For all candidate seed matrices, 6−1νM ⊆ SY|X. In the first candidate, we only consider bivariate response regression. The
inversemean6−1E(X|Y) is an element of SY|X, so E(X|Y) can be used as a seedmatrix. It is constructed, however, by slicing Y
in practice. For instance, if r = 4, the minimum total number of slices will be 24

= 16 whichmay not be effective for a small
sample of size 100 or less. However, for bivariate responses, we may be able to obtain more than 4 cells in the hypercubes
with sufficient observations in each of them for the estimation of the first moments of an inverse regression. Because of it,
for higher-dimensional responses, K -means clustering replaces the hierarchical slicing. The second candidate seedmatrix is
the inverse mean of E(X|Y) with slices constructed through the K -means clustering algorithm. A similar approach to using
the clustering algorithm to restore the second conditional moments of X|Y is suggested in Yoo et al. (2010).

The last candidate seed is the covariance matrix of X and Y, which successfully reduces the dimension in multivariate
regression in Yoo and Cook (2007).

The conditions to attain dimension reduction of X without loss of the information of SY|X with the three candidate seed
matrices are summarized in the next proposition.

Proposition 1. Assume that SYk|X ⊆ 6−1S(νM) for k = 1, . . . , r and SY|X = ⊕
r
k=1 SYk|X. Then 6−1S(νM) = SY|X.

Proof. Showing that S(6−1νM) ⊆ SY|X is easy, because the linearity condition guarantees it. On the other hand, since
SYk|X ⊆ 6−1S(νM) for k = 1, . . . , r , it is guaranteed that ⊕

r
k=1 SYk|X ⊆ 6−1S(νM). By the condition that SY|X = ⊕

r
k=1 SYk|X,

it is straightforward that SY|X =⊆ 6−1S(νM). This completes the proof. �

When an underlying regression satisfies a condition that YyX|E(Y|X), the regression is called location regression. Then the
information of SY|X is completely characterized in E(Y|X), so we have that SY|X = S{E(Y|X)}. That is, all information of the
regression is placed onto the first conditional moment of Y|X. This assumption holds in multivariate linear regression and
related reduced-rank regression, which are themost popular in multivariate regression analysis. And, the goal of dimension
reduction in high-dimensional data is often placed onto reasonable simplification of data as much as possible to conduct
proper statistical inference. Therefore, a class of the location regression is considered asmild restriction in various regression
problems in practice, and it satisfies the two conditions of SYk|X ⊆ 6−1S(νM), k = 1, . . . , r , and SY|X = ⊕

r
k=1 SYk|X

stated in Proposition 1. It is noted that the two conditions in Proposition 1 are weaker than the location regression. Hence,
Proposition 1 should not be an obstacle in practice to conduct seeded dimension reduction in multivariate regression.

Next we need to define MY|X to contain SY|X so that it is straightforward that 6−1νM ∈ MY|X. And, as a basis matrix RM,u
for MY|X, we will use the following matrix

RM,u ≡ (νM , 6νM , . . . , 6u−1νM), u = 1, 2, . . . , u∗.

Then, for a proper value u∗ of u, SY|X is spanned by the columns of

B = RM,u∗(RT
M,u∗6RM,u∗)−1RT

M,u∗νM .

In practice, first, 6 and νM are replaced by their sample quantities and then a proper value of u, saying u∗, is determined,
and the sample versions of R̂M,u∗ and B̂ are constructed accordingly. Then S(B̂) is an estimator of SY|X.
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Table 1
Comparisonswith a projective resampling based on Example 1with in Section 4.1: cov(X, Y),
seeded dimension reduction; PR, a projective resampling method by Li et al. (2008).

n = 100 n = 200 n = 400 n = 800 n = 1600

cov(X, Y) 0.193 0.135 0.097 0.069 0.048
PR 0.276 0.185 0.133 0.095 0.067

4. Numerical studies and data analysis

4.1. Numerical studies

We considered four different regressionmodels. The first three examples formultivariate regressionwith additive errors,
and the fourth one is a survival regression.

Example 1. A resampling method developed by Li, Wen, and Zhu (2008) is shown to have potential advantages over other
dimension reduction methods available in multivariate regression. The purpose of the example is to show usefulness of the
multivariate seeded dimension reduction through methodological comparisons with the existing method. So we followed
Model 4.4 in Li et al. (2008).

In the example, six-dimensional predictors of X = (X1, . . . , X6) were independently generated from N(0, 1). Then, five
dimensional responses of Y = (Y1, . . . , Y5) are constructed as follows: Y1 = X2 + (3X2)/(0.5+ (X1 +1.5)2)+ε1; Y2 = X1 +

exp(0.5X2) + ε2; Y3 = X1 + X2 + ε3; Y4 = ε4; Y5 = ε5, where ε = (ε1, . . . , ε5) ∼ MN(0, 1)yX, with 1 = diag(11, 12), in
which11 =


1 −1/2

−1/2 1


and12 = diag(1/2, 1/3, 1/4). And, a notation ofMN stands formultivariate normal distribution.

In the example, the central subspace is spanned by η = {(1, 0, 0, 0, 0, 0)T, (0, 1, 0, 0, 0, 0)T}. As a seed, we consider
cov(X, Y) with u∗

= 4. To measure howwell MY |X is estimated, following the distance used in Li et al. (2008), we computed
m = ∥ηηT

− B̂(B̂TB̂)−1B̂T
∥. The resulted ms are reported in Table 1 along with the results from a projective resampling

method.
According to Table 1, the seeded dimension reduction shows slightly better performances in estimating SY|X than the

projective resampling method. Here, we are not going to conclude that the proposed method is superior to the existing
one. Rather, we are telling that themultivariate seeded dimension reduction can have good applications to regressions with
n > p where various other dimension reduction methods are applicable.

For Examples 2–3, the following variable configuration for predictors of X ∈ Rp was commonly used: predictors X ∈ Rp

for either p = 10 or p = 500were independently generated fromMN(0, 6), where6 = (2/3)diag(2, . . . , 2, 1, . . . , 1)with
equal multiplicity between 1 and 2. And, for both the examples, the number of iteration was 100, and u∗

= 4 was used to
simplify simulations. Define that η1 ∈ Rp

= (p−1/2, p−1/2, . . . , p−1/2) and η2 ∈ Rp
= {(0.4∗p)−1/2, (0.4∗p)−1/2, . . . , (0.4∗

p)−1/2, 0, . . . , 0}. In η1, all coordinate values are equal and are normalized for its length to be one. For η2, all of the first 40%
coordinate values are equal to (0.4 ∗ p)−1/2 and otherwise zeros. Either one or both were commonly used to define SY|X.

Example 2. Here we consider a case that dim(SY|X) = 1, which is spanned by the column of either η1 or η2, and constructs

the following bivariate regressions: Y1 = sin(ηT
i X)+0.3ε1 and Y2 = exp(ηT

i X)+0.3ε2 for i = 1, 2, where εi
i.i.d.
∼ N(0, 1)yX.

As seed matrices, we used the three candidates of cov(X, Y) and E(X|Js) and E(X|Ks), s = 1, 2, 3, 4.

Let B̂ stand for the estimate of ηis through the proposed multivariate seeded dimension reduction. Then, to summarize

how well ηis are estimated, we considered averages of |


R2
i |s for i = 1, 2, where R2

i represent the coefficient of

determination computed from a regression of ηT
i X|B̂TX. The simulation results are reported in Table 2.

Table 2 represents the characteristic behaviors in the estimation of SY|X observed in other numerical studies regarding
bivariate response regressions. According to the table, for the estimation of either η1 of η2, the seed of E(X|Ks) performs
relatively worse than the other two seedmatrices, and it turns out to be sensitive to sizes of n and p. The reason why E(X|Js)
shows better performances than E(X|Ks) is because the slicing scheme is better in the construction of inversemean ofX than
the K -means algorithm with bivariate responses, as Yoo et al. (2010) indicates. This implies that, with bivariate responses,
one is recommended to use either of cov(X, Y) and E(X|Js) over E(X|Ks). And, the seed of cov(X, Y) shows a quite good robust
estimation of SY|X regardless of the true basis matrices in either case of n > p and n < p.

Example 3. As the second simulation example, the following model was considered: Y1 = ηT
1X + (ηT

2X)3/10 + 0.3ε1;

Y2 = ηT
2X + (ηT

1X)3/10 + 0.3ε2; Y3 = (ηT
1X)2 + 0.3ε3, where εi

i.i.d.
∼ N(0, 1)yX.

In the example, the dimension of responses is three, and the central subspace SY|X is spanned by the two columns of
(η1, η2). As seed matrices, cov(X, Y) and E(X|Ks), s = 1, 2, 3, 4, were considered, following that 3 or higher dimensional
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Table 2
Averages of |R2

|s for Example 2 with in Section 4.1.

From ηT
1X|B̂TX From ηT

2X|B̂TX
n = 50 n = 100 n = 50 n = 100
p = 10 p = 500 p = 10 p = 500 p = 10 p = 500 p = 10 p = 500

cov(X, Y) 0.985 0.909 0.992 0.911 0.985 0.911 0.992 0.903
E(X|Js) 0.962 0.962 0.980 0.980 0.961 0.752 0.980 0.774
E(X|Ks) 0.923 0.722 0.975 0.786 0.923 0.706 0.975 0.779

Table 3
Averages of |R2

|s for Example 3 with in Section 4.1.

From ηT
1X|B̂TX From ηT

2X|B̂TX
n = 50 n = 100 n = 50 n = 100
p = 10 p = 500 p = 10 p = 500 p = 10 p = 500 p = 10 p = 500

cov(X, Y) 0.985 0.927 0.990 0.929 0.992 0.959 0.995 0.958
E(X|Ks) 0.918 0.805 0.951 0.830 0.895 0.754 0.929 0.793

slicing does not work very well according Yoo et al. (2010). For Y3|X alone, both seed matrices are never informative to η1,
but the relation of SY|X = ⊕

3
i=1 SYi|X holds, because η1 can be restored from Y1|X and Y2|X. Tomeasure howwell η = (η1, η2)

is estimated, we computed averages of |


R2
i |s, i = 1, 2, from ηT

1X|B̂TX and ηT
2X|B̂TX, where B̂ is the estimate of η through

the multivariate seeded dimension reduction. The simulation results are reported in Table 3.
From Table 3, we can see similar patterns to Table 2. Again, in the example, the seed of cov(X, Y) usually works better

than E(X|Ks).

Example 4. For the survival application of the proposed method, we considered the Cox-proportional hazard model used
in Yoo (2013). With n = 300 with either p = 100 or 1000, the first 30% predictors and all the other predictors, respectively,
were independently generated from N(0, 5) and N(0, 1). Next we defined that η had the first 30% elements equal to
(0.3p)−0.5 and the remaining ones equal to zeros. The score function of f (x) = 5ηTX was examined. For baseline hazard,
the Weibull distribution with the shape and scale parameters varied to 1 and 10 respectively. Censoring time C , which
is independent of X, was generated from U(0, υ) for υ = 4, 8, 12. Then the observed survival time ranges between 0 and
10 years depending on choices of υ . Then true survival time T is defined as follows: T = {− log(U1) exp(−5ηTX)}1/10, where
U1 ∼ U(0, 1)y(X, C). By this the observed survival time Y and censoring status δ are defined as follows: Y = min(T , C) and
δ = 0, if Y = T and 1, otherwise. In the model, observed censoring percentages were around 35%, 20%, and 14% for υ = 4,
8, 12 in order.

Here we adopted cov{X, Y = (Y , δ, Y ∗ δ)} as a seed matrix with u∗
= 4 for simplicity. The usefulness of cov(X, Y) in

dimension reduction in survival regression is well discussed in Yoo and Lee (2011). Among total 300 samples, 200 samples
were randomly selected as training samples,whichwere used to get estimates B̂ofη through theproposed seededdimension
reduction. Using the remaining 100 test samples, areas under ROC curves of predicted values were computed from B̂TX to
measure estimation performances. This example was already done in Yoo (2013) with E(X|Js) via the bivariate slicing of Y
and δ as a seed matrix. Table 4 reports the areas under the ROC curves from the two seed matrices.

It shows that the seeded dimension is robust to choices of censoring and provides reliable prediction with larger p.
Comparing performances between cov(X, Y) and E(X|Js), there are no notable differences, although cov(X, Y) is slightly
better with C ∼ U(0, 4) and C ∼ U(0, 8) than E(X|Js) and vice versa with C ∼ U(0, 12).

4.2. Diffuse large-B-cell lymphoma data

For the purpose of illustration of the proposed method in high-dimensional data analysis, diffuse large-B-cell lymphoma
data (DLBCL; Rosenwald et al., 2002) are analyzed. The DLBCL data of Rosenwald et al. (2002) contain measurements of
7399 genes from 240 patients obtained from customized cDNA microarrays. For each patients, survival time was recorded
and varied from 0 to 21.8 years. The total uncensored cases (deceased) are 138 among 240 patients. The DLBCL dataset is
available at http://llmpp.nih.gov/DLBCL.

The DLBCL dataset was analyzed by Li (2004) using gene expression information. First the dataset was randomly divided
into a training set of 148 cases and a test set of the remaining 74 cases. Then a two-step procedure was employed to
reduce dimensions of 7399 genes for the training set. The genes were initially replaced with their 40 principal components
through principal component analysis, and then bivariate sliced inverse regression (Cook, 2003) was conducted in a survival
regression of bivariate responses of the observed survival time and censoring status given 40 selected principal components.
Finally the Cox-proportional hazard model was fitted with the second dimension-reduced gene expressions. For model-
validation, predicted scores for both the training and testing sets were computed.

http://llmpp.nih.gov/DLBCL
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Table 4
Area under ROC curves predicted from B̂TX for Example 4 in Section 4.1.

Year 1 2 3 4 5 6 7 8 9 10

Censoring C ∼ U(0, 4)

p = 100 cov(X, Y) 0.746 0.715 0.717 0.658 – – – – – –
E(X|Js) 0.738 0.714 0.714 0.634 – – – – – –

p = 1000 cov(X, Y) 0.703 0.684 0.685 0.654 – – – – – –
E(X|Js) 0.699 0.679 0.678 0.637 – – – – – –

Censoring C ∼ U(0, 8)

p = 100 cov(X, Y) 0.744 0.712 0.713 0.712 0.713 0.699 – – – –
E(X|Js) 0.728 0.702 0.701 0.707 0.716 0.707 – – – –

p = 1000 cov(X, Y) 0.705 0.688 0.682 0.689 0.684 0.651 – – – –
E(X|Js) 0.699 0.679 0.680 0.678 0.663 0.619 – – – –

Censoring C ∼ U(0, 12)

p = 100 cov(X, Y) 0.737 0.711 0.712 0.725 0.736 0.737 0.743 0.721 0.688 0.671
E(X|Js) 0.733 0.709 0.710 0.716 0.727 0.728 0.728 0.725 0.690 0.669

p = 1000 cov(X, Y) 0.696 0.685 0.689 0.693 0.698 0.699 0.685 0.652 0.626 0.614
E(X|Js) 0.700 0.684 0.684 0.683 0.686 0.700 0.690 0.679 0.655 0.622

(a) Testing data. (b) Training data.

Fig. 1. Area under ROC curves at time 1–10 years; PC + SIR, Li’s approach; cov(X, Y ), a seed with cov{X, (Y , δ, Y ∗ δ)}; E(X |Y ), a seed with E(X|Js).

One possibly arguable issue in the analysis should be the initial reduction of genes through principal component analysis,
because it is done only based on the marginal information of the genes, ignoring the conditional dependence of the survival
time and censoring status given in the genes.

We apply multivariate seeded dimension reduction and replace the two-step dimension reduction of the genes with
the one-step seeded dimension reduction. This analysis is expected to be potentially better in prediction than Li’s analysis,
because the former can attain more informative dimension reduction of the genes during a whole process by considering
the conditional dependency.

As candidate seed matrices, E(X|Js) and cov{X, (Y , δ, Y ∗ δ)} were considered and their performances were compared
with Li’s approach. To decide u∗, we applied bootstrap determination criteria by Yoo (2013), and it turned out that u∗

= 2
for both cases. (not reported).

Evaluation of the performanceswas done by computing areas under ROC curves of predicted values fromboth the training
and testing sets, which is reported in Fig. 1.

According to Fig. 1, the application of the proposed methods with two different seed matrices yields a better prediction
of survival time for both test and training sets than Li’s analysis, although the differences are much larger for training sets.

The difference from the analysis in Yoo (2013, Section 5.2) is placed onto utilizing information about the international
prognostic index. The index is regarding clinical characteristics such as age, tumor stage, serum lactate dehydrogenase
concentration, performance status and a number of extranodal disease sites. The usage of information on the index improved
area under ROC curves in the testing set from the analysis presented here.
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Table 5
Mean squared errors of prediction on the test set inNIRdata: cov(X, Y),
seeded dimension reduction; mPLS, multivariate partial least squares.

Fat Sugar Flour Water

cov(X, Y) 0.119 0.605 0.422 0.114
mPLS 0.123 1.117 0.594 0.099

4.3. Near-infrared spectroscopy of biscuit doughs data

For another illustration of the proposed method, near-infrared spectroscopy of biscuit doughs data (Brown, Fearn, &
Vannucci, 2001; NIR) is analyzed. This dataset includes the measurements of the composition of biscuit dough pieces from
near-infrared spectroscopy, which is one of most favorable methods to analyze constitutions of various materials such as
food and drink, pharmaceutical products, and petrochemicals. The datawere collected tomeasure the composition of biscuit
dough pieces and the four constituents are under investigation: fat, sucrose, dry flour andwater. The calculated percentages
of the four ingredients are four-dimensional responses. As predictors, in the original dataset, there are 700 points measured
from 1100 to 2498 nanometers (nm) in steps of 2 nm. Following Brown et al. (2001), the number of points was reduced by
removing the first 140 and the last 49 wavelengths, which were believed to have little useful information and increasing
the steps from 2 to 4 nm. Then a wavelength ranging from 1380 to 2400 nm is used and there are 256 points, representing
the dimension of predictors equal to 256. The data can be acquired from ppls-package of statistical language R and is
named cookie. There are total 72 samples in the data, and they were divided into two groups of 40 training and 32 test
samples, and two observations of sample 23 in the training set and sample 21 in the test set were eliminated as outliers
before analysis.

For data analysis, we consider a classical multivariate linear regression of
Y ∈ R4

|X ∈ R256
= α + βTX + ε,

where α ∈ R4, β ∈ R256×4 and ε ∈ R4 is a random vector with mean 0 and the covariance matrix 6 and is independent of
X.

With the training set, the multivariate linear regression was estimated and then evaluated by the test set. Since the
direct estimation of α and β through the ordinary least squares was not possible due to p = 256 > n = 40, we constructed
dimension-reduced predictors B̂T

trX by the proposed method with cov(X, Y) as a seed and u∗
= 4. Then the new predictors

B̂TX replaced the original 256-dimensional predictors, and themultivariate linear regressionwas fitted through the ordinary
least squares on the regression of Y|B̂TX.

For the purpose of comparison, the data was fitted through multivariate partial least squares, which was adopted in
Brown et al. (2001) as one of the standard statistical analyses. In Brown et al. (2001), five components were considered for
partial least squares, and we followed the guidance.

After fitting the data via the two approaches, as comparison criteria, mean squared errors of predictions on the test set
were computed for each response variable and are reported in Table 5.

As we can see from Table 5, the model building through multivariate seeded dimension reduction provides potential
advantages over the standard analysis, and we can again confirm practical usefulness in high dimensional data analysis.

5. Discussions

In this paper, we present a seeded dimension approach for multivariate regression, which is applicable with a case of
n < p. Also we provide two conditions to guarantee the dimension reduction of predictors without loss of information
about the regression. Since the conditions can cover a large class of multivariate regression, called location regression, they
should not be heavy in practice.

Numerical studies confirm that the proposed dimension reduction method is theoretically well supported. To show
practical usefulness of the proposed methodology, it is applied to diffuse large-B-cell lymphoma data and near-infrared
spectroscopy of biscuit dough data. In both data analyses, the proposed method produces better predictions than
corresponding existing analyses.

The proposed approach will provide a possible neat solution to big data analysis such as high-dimensional classification
or functional data analysis that the dimensionality of datasets dramatically increases over time. The computer codes for the
paper is available upon request.
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