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High-throughput data dimension reduction via
seeded canonical correlation analysis

Yunju Im, HeyIn Gang and Jae Keun Yoo*

Canonical correlation analysis (CCA) is one of popular statistical methodologies in multivariate analysis, especially, in
studying relation of two sets of variables. However, if sample sizes are smaller than the maximum of the dimensions
of two sets of variables, it is not plausible to construct canonical coefficient matrices due to failure of inverting sample
covariance matrices. In this article, we develop a two step procedure of CCA implemented in such situation. For this,
seeded dimension reduction is adapted into CCA. Numerical studies confirm the approach, and two real data analyses
are presented. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Canonical correlation analysis (CCA) is a method to measure an
association between two sets of variables and focuses on seeking
pairs of linear combinations from two sets of variables by max-
imizing the Pearson correlation between two sets of variables.
The pairs of linear combination and their correlations are called
canonical variates and canonical correlations, respectively. A few
pairs of canonical variates are believed to be able to represent
the relation between the original sets of variables and their vari-
abilities. We briefly introduce the major concepts and statistics
of CCA.

Suppose that we are interested in measures of association
between two sets of variables of X 2 Rp and Y 2 Rr . Define that
cov(X) = †x > 0, cov(Y) =†y > 0, cov(X, Y) =†xy , and cov(Y, X)
= †yx . For two linear combinations of X and Y, saying U = aTX
and V = bTY, it is obtained that var(U) = aT†xa, var(V) = bT†yb
and cov(U, V) = aT†xyb, where a 2 Rp�1 and b 2 Rr�1.

We seek to find a and b to maximize Pearson-correlation
between U and V :

cor(U, V) =
aT†xyb

p
aT†xa

q
bT†yb

(1)

In CCA, such a and b are constructed based on the following
criteria:

(1) The first canonical variate pair (U1 = aT
1X, VT

1 = bT
1Y) is

constructed from the maximization of (1)
(2) At the k � 2 step, the kth canonical variate pair (Uk =

aT
k X, Vk = bT

k Y) is constructed from the maximization of (1)
with restriction that var(Uk) = var(Vk) = 1 and (Uk , Vk) are
uncorrelated with the previous (k – 1) canonical variate pairs.

(3) Repeat Steps 1 and 2 until k = min(p, r).
(4) Select the first d pairs of (Uk , Vk) to represent the relationship

between X and Y.

Then the pairs (ai , bi) are acquired as follows: ai = †–1/2
x  i

and bi = †–1/2
y �i for i = 1, : : : , q, where ( 1, ..., q)

and (�1, ...,�q) are the eigenvectors of †–1/2
x †xy†

–1
y †yx†

–1/2
y

and †–1/2
y †yx†

–1
x †xy†

–1/2
x with the corresponding common

nonzero ordered-eigenvalues of �*2
1 � � � � � �*2

q � 0, respec-
tively. The matrices of Mx = (a1, : : : , aq) and My = (b1, : : : , bq) are
called canonical coefficient matrices.

Hereafter, the CCA by the decompositions of
†–1/2

x †xy†
–1
y †yx†

–1/2
y and †–1/2

y †yx†
–1
x †xy†

–1/2
x will be

called the standard CCA. For more details regarding the standard
CCA, readers may refer to Johnson and Wichern [1].

One major problem arises with a sample size n less than or
equal to max(p, r), because the sample covariance matrices of†x
and †y are not invertible. To overcome this, various penalized
approaches were proposed. Parkhomenko et al. [2] suggested a
CCA to be carried out by penalizing the left and right singular
vectors in the covariance matrix of †xy . Waaijenborg et al. [3]
converted the standard CCA to regression forms and adopted a
penalized method called elastic net (Zou and Hastie [4]). And, a
sparse CCA proposed by Le Cao et al. [5] adapted sparse partial
least squares into CCA. Witten et al. [6] applied a penalized matrix
decomposition into CCA. One common thing in the various ver-
sions of the sparse CCAs is to overcome the matrix inversion
problem and to make parts of canonical coefficient matrices
zeros. For this, tuning parameters are required, which are typi-
cally determined by cross-validation procedures. Therefore, when
min(p, r) is large, the sparse CCA methods often turn out to
computationally intensive in practice.

In this paper, we propose an approach of CCA applicable
with n � max(p, r) by adapting a seeded dimension reduction
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(Cook et al. [7]). Different from the sparse CCAs, the proposed
method does not make parts of canonical coefficient matrices
zeros intentionally. Instead, seed matrices, constructed from†xy
and †yx , are iteratively projected into the marginal covariance
matrices of †x and †y . By this, the proposed method can be
enjoyed relatively less intensiveness in computation.

This paper is organized as follows. We briefly discuss seeded
dimension reduction in Section 2. Section 3 is devoted to asso-
ciate CCA with seeded dimension reduction for developing
seeded canonical correlation analysis. Numerical studies and real
data analysis are presented in Section 4. In Section 5, we summa-
rize our works.

We will define notations frequently used. For a matrix B 2 Rp�q

and a subspace S of Rp, BS denotes the set of {Bx : x 2 S}. A sub-
space S(b) represents a subspace spanned by the columns of b.
For a symmetric and positive definite matrix†, a† inner-product
in Rp is defined as < a, b >†= aT†b. An orthogonal projec-
tion operator onto S(b) relative to < a, b >† will be defined
as b(bT†b)�bT†, where � stands for the Moore-Penrose inverse
(Searle [8]). And, the true rank of Mx and My will be denoted as d.

2. SEEDED DIMENSION REDUCTION

The primary purpose of sufficient dimension reduction (SDR)
in regression of Y 2 Rr |X 2 Rp is to replace the original
p-dimensional predictors X with a lower dimensional linear pro-
jection without loss of information on the conditional distribution
of Y|X. In other words, SDR seeks to search ˛ 2 Rp�q such that

Y ?? X|˛TX, (2)

where?? represents independence and q � p.
Subspaces spanned by the columns of ˛ satisfying (2) are

called dimension reduction subspaces, and the minimal subspace
among them is called the central subspace SY|X. Naturally, the
estimation of SY|X is the main stream in the context of SDR.

In general, many SDR methods require the inversion of the
covariance matrix †x . However, with sample sizes n � p, the
inversion of the sample version of†x is not plausible, and hence
the SDR methods may not be applicable.

In order to overcome the problematic issue, Cook et al. [7]
proposed a method without matrix inversion. For this to be car-
ried out, a seed matrix � 2 Rp�q should be defined so that
S(�) � †xSY|X. In order to avoid complications, it is assumed
that S(�) = †xSY|X.

Suppose that there is a known subspace MY|X of Rp contain-

ing SY|X. This indicates that †–1
x S(�) � MY|X. Let PMY|X(†x ) =

R(RT†xR)–1RT†x be an orthogonal projection operator onto
MY|X relative to < a, b >†x , where R is a p � q matrix such that
S(R) = MY|X.

The previous discussion directly implies the following
equivalences:

†–1
x � = PMY|X(†x )†

–1
x � = R(RT†xR)–1RT†x†

–1
x �

= R(RT†xR)–1RT�.
(3)

According to the last equivalence of (3), the columns of
R(RT†xR)–1RT span SY|X, but the inversion of†x is not required.

If RT†xR is not invertible, (RT†xR)� is applied instead.

To estimate SY|X through R(RT†xR)–1RT�, we need to identify
the matrix R, whose column subspace is large enough to enclose
SY|X and small enough to estimate SY|X from available data. In
order to find the matrix R, iterative projections of � onto†x were
suggested by Cook et al. [7]:

Ru � (�,†x�,†2
x�, : : : ,†u–1

x �), u = 1, 2, : : : , u*. (4)

We call the letter u in (4) a termination index of the projections. It
is noted that S(Ru–1) � S(Ru) for any u � 2. Because S(Ru) forms
a nondecreasing sequence, it is important to select a proper ter-
mination index u, large enough to guarantee S(Ru) = MY|X
and small enough to capture SY|X. Recently, Yoo [9] suggests
bootstrap coefficients of variations to determine the termination
index, which does not require any asymptotics and is imple-
mented in a simple way.

3. SEEDED CANONICAL
CORRELATION ANALYSIS

3.1. Development

To begin with, we need to see why the seeded dimension
reduction method can be adapted to CCA, by investigating
the relation between ordinary least squares and canonical
coefficient matrices.

Recall the definitions of the canonical coefficient matrices Mx
and My from the introduction. According to Lee and Yoo [10], it
has been shown that

S(Mx) = S(†–1
x †xy) and S(My) = S(†–1

y †yx), (5)

where†–1
x †xy and†–1

y †yx are the ordinary least squares coeffi-
cient matrices of Y|X and X|Y, respectively.

The relation in (5) directly indicates that the information on Mx
and My is exhaustively restored through †–1

x †xy and †–1
y †yx .

Another interpretation of (5) is that one of possible basis matrices
for S(†–1

x †xy) can become Mx . Therefore, once any basis matri-

ces of S(†–1
x †xy) and S(†–1

y †xy) are known, Mx and My can be
restored through some orthogonalization procedures.

If max(p, r) � n, Mx and My cannot be estimated through
the standard CCA due to failure of inverting the sample versions
of †x and †y . Meanwhile, the basis matrices of †–1

x †xy and

†–1
y †yx are estimable through seeded dimension reduction with

seed matrices of†xy and†yx . Therefore, although the direct esti-
mation of Mx and My is not plausible through the standard CCA
with max(p, r) � n, they can be indirectly restored by estimating
basis matrices of†–1

x †xy and†–1
y †yx .

Let Mx,0 and My,0 be matrices resulted from the seeded dimen-
sion reduction application with seed matrices of †xy and †yx .
Then the relation in (5) directly indicates that

S(Mx) = S(Mx,0) and S(My) = S(My,0). (6)

Next, the original two sets of X and Y are replaced with MT
x,0X

and MT
y,0Y. Because the ranks of Mx and My , denoted as d, are

less than min(p, r), these replacements result in dimension reduc-
tions of X and Y, and it will be called initialized CCA, hereafter.
It should be noted that the initialized CCA is guaranteed to be
equally informative to the standard CCA application by (6).
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Although the ranks of MT
x,0X and MT

y,0Y are theoretically less
than min(p, r), Mx,0 and My,0 are still p � r and r � p matrices,
respectively. Also, Mx,0 and My,0 may not be satisfied with the
orthonormality required in the standard CCA. Therefore, the CCA
dimension reductions are completed by the standard CCA appli-
cation with MT

x,0X and MT
y,0Y, which yields the final canonical

coefficient matrices of Mx and My . This procedure will be called
finalized CCA. To perform the finalized CCA in practice, we need to
have that d is relatively smaller than n. It is not heavy in practice,
because this is the main reason for dimension reduction.

The proposed two-step CCA procedure done by the initialized
and finalized CCAs will be called seeded canonical correlation anal-
ysis. Two implementations of the seeded CCA will be presented in
next section.

3.2. Implementation

Recall that Mx,0 and My,0 are resulted from the initialized CCA

application. The replacements of X and Y by MT
x,0X and MT

y,0Y
cause initial dimension reductions, which are theoretically equiv-
alent to the standard CCA. In implementation perspective, how-
ever, the dimensions of †xy and †yx used in the initialized CCA
can affect the accuracies in estimation of Mx,0 and My,0 and
numerical stability in computation. Hence, if the dimensions of
†xy and †yx are large, †xy and †yx should be adjusted small
enough to yield Mx,0 and My,0 equally informative to the stan-
dard CCA. Depending on the size of min(p, r), two versions of
seeded CCA are proposed.

3.2.1. Case 1: min(p, r) fairly small

The first case is that min(p, r) is fairly smaller than n. For simplic-
ity and without loss of generality, we assume that r < p, and
the maximum number of pairs of canonical variates is equal to r.
Then the initialized CCA is carried out with O†xy and O†yx as the

seed matrices, and X alone is replaced with OMT
x,0X. Next, by the

finalized CCA with OMT
x,0X and the original Y, the CCA reduction

is completed.

3.2.2. Case 2: min(p, r) large compared with n

The second case is that min(p, r) is not fairly small compared with
n, or even larger than n. Then, as the seed matrices in the initial-
ized CCA, the sets of the eigenvectors corresponding to m largest
eigenvalues of O†xy and O†yx are used. The verification of these
replacements is summarized in the next lemma.

Lemma 1
Assume that d < min(p, r), where d stand for the true ranks of
rank(Mx) and rank(My). Let �x 2 Rp�d and �y 2 Rr�d represent
the eigenvectors corresponding to the d largest eigenvalues of
†xy and†yx , respectively. Then, S(Mx) = S(†–1

x �x) and S(My) =

S(†–1
y �y).

Proof: We will prove only that S(Mx) = S(†–1
x �x), because,

by applying the same arguments, S(My) = S(†–1
y �y) is estab-

lished. By relation (5), rank(†–1
x †xy) = d, which directly implies

that rank(†yx) = d. Therefore, we have S(†yx) = S(�x) by

the construction of �x . Then we have S(Mx) = †–1
x S(†yx) =

†–1
x S(�x). This completes the proof.�

Denote the two sets of the eigenvectors corresponding to the m
largest eigenvalues of O†xy and O†yx as O�x 2 Rp�m and O�y 2 Rr�m,
respectively. Through the initialized CCA with O�x and O�y as seed

matrices, OMx,0 and OMy,0 are constructed, and OMT
x,0X and OMT

y,0Y

replace the original sets of X and Y. Again, the CCA reduction is
completed by the finalized CCA with OMT

x,0X and OMT
y,0Y.

Here, it is important to choose m large enough to have
S( O†yx) = S( O�x) andS( O†xy) = S( O�y) but small enough to estimate
Mx and My more accurately and to have numerical stability. To
select a proper value of m without avoiding complexity, we adopt
two simple and widely accepted ways in practice. One is graphi-
cal determination by a scree plot for eigenvalue of O†xy , and the
other is the number of eigenvalues whose sum is to cover 60% or
above of the total variations of O†xy .

4. NUMERICAL STUDIES AND
DATA ANALYSIS

4.1. Numerical studies

To confirm the effectiveness of the proposed method, three sim-
ulation examples are presented. In all examples, we consider n =
100, and the number of iteration is always 100. The termination
index u* is fixed at 3 for simplicity.
Example 1
The first example is the case that min(p, r) is fairly small. Define
� to have its first and last of 20% of elements equal to (0.4)–1/2

and all other elements are equal to 0. The first set X of p variables
was generated from MN(�,†), where MN stands for multivariate
normal distribution, � = 0 and † = diag(�). In the exam-
ple, we considered either 10 or 100 for p and two choices for �:
�1 = (2/3)diag(2, : : : , 2, 1, : : : , 1)T with equal multiplicity between
1 and 2 and �2 = (2/p + 1)(p, (p – 1), : : : , 1)T.

The second set Y was constructed in three different cases: (1)
Y1 = �TX + "1 and Y2 = �TX + "2; (2) Y1 = �TX + "1 and Y2 =
(�TX)3 + "2; (3) Y1 = (�TX)3 + "1 and Y2 = (�TX)3 + "2, where

"i
i.i.d
� N(0, 1) ?? X for i = 1, 2.
Because min(p, r) = 2 in the example, the estimation of Mx was

focused rather than that of My . Then Mx was estimated by the

first case of the seeded CCA with O†xy 2 Rp�2, which resulted in
OMx 2 Rp�2. To measure the accuracy of the estimation of Mx ,

the averages of |r|s were computed. The notation |r| stands for
the absolute value of R2 from a regression of �TX| OMT

x X. If OMx esti-
mates �well, the averages should be close to one. The results are
presented in Table I.
Example 2
In the example, the dimension of X was fixed at
p = 500 and was generated from MN(0,†), where
† = (2/3)diag(2, � � � , 2, 1, : : : , 1)T with equal multiplicity between
1 and 2.

For the second set Y, its dimension r varied among 10, 20, 50,
100, and 200. Define that�1 = 1 + X1 and�2 = 2 + X2. Then Y was
generated as follows: Y1 = �1 +"1; Y2 = �2 +"2; Y3 = �1 +�2 +"3;
Y4 = �1 – �2 + "4; Yr = "r for r � 5, where " = ("1, : : : , "r)T was
independently generated from the standard normal distribution,
and " ?? X.

In the example, X is associated with Y only through X1 and X2.
Therefore, Mx is equal to � = {(1, 0, : : : , 0)T, (0, 1, 0, : : : , 0)T}. On
the other hand, Y is associated with X only through �1 and �2.
Hence, My is equal to � = {(1, 0, : : : , 0)T, (0, 1, 0, : : : , 0)T}.
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Table I. Averages of |r|s computed from �TX| OMT
x X for Example 1

�1 �2

models p = 10 p = 500 p = 10 p = 500

Y1 = ˇTX + "1, Y2 = ˇTX + "2 0.9789 0.8198 0.9992 0.9421
Y1 = ˇTX + "1, Y2 = (ˇTX)3 + "2 0.9748 0.7915 0.9709 0.8025
Y1 = (ˇTX)3 + "1, Y2 = (ˇTX)3 + "2 0.9841 0.855 0.9898 0.928

Table II. Averages of |r|s for Example 2

r �T
1X| OMT

x X �T
2X| OMT

x X �T
1Y| OMT

y Y �T
2Y| OMT

y Y

10 0.8979 0.8901 0.8929 0.8852
20 0.8923 0.8924 0.8817 0.8831
50 0.8854 0.8862 0.8632 0.8637
100 0.8714 0.8676 0.8356 0.8312
200 0.8332 0.8274 0.7801 0.7828

Because min(p, r) is relatively large, the matrices of O�x 2 Rp�2

and O�y 2 Rr�2 were used in the initialized CCA, where O�x and
O�y were sets of the eigenvectors corresponding to the first two

largest eigenvalues of O†xy and O†yx , respectively.
Let |rx

i | stand for the absolute value of R2 from a regression of

�T
i X| OMT

x X for i = 1, 2. To measure the accuracy of the estimation
of Mx , the averages of |rx

i |s were calculated for i = 1, 2. Similarly,

for My , we computed the averages of |r
y
i |s from a regression of

�T
j X| OMT

y X for j = 1, 2. The results are summarized in Table II.

Example 3
Example 2 was slightly modified by setting�1 = 1.5(5 + |X1|)(X2 +
X3) and �2 = 1 + X1, while the rest of the setting in Example
2 remained the same. The purpose of the example is to study
how the existence of non-linear relationship in X affects the esti-
mation of Mx and My . In the example, X is associated with Y
only through X1 and X2 + X3, while the association of Y with
X remains the same as Example 2. Hence, � alone is changed
to {(1, 0, � � � , 0)T, (0, 1, 1, 0, � � � , 0)T}. The same statistics summarize
the simulation studies, and they are reported in Table III.

According to Table I, the performances of seeded CCA seem
quite good for both p = 10 and 500. And, Table II shows that
the performances are all notable, although the performances
get worse as r increases. Compared with Example 2, the good
performances in the estimation of both Mx and My are observed.

Overall, various numerical studies including these three exam-
ples support the proposed method well, and there will be no
critical issues in use in practice.

4.2. Real data application

4.2.1. Near-infrared spectroscopy of biscuit doughs data

To illustrate the seeded CCA in practice, near-infrared spec-
troscopy of biscuit doughs data (Brown et al. [11]; NIR) was
adopted. Quantitative NIR spectroscopy is used to analyze diverse
compositions in food, drink, pharmaceutical products, and petro-
chemicals. The experiment of the biscuit dough data set was
conducted to measure the suitability of NIR spectroscopy for
analyzing the composition of biscuit. The percentages of four
components of biscuits made by standard recipe-fat, sucrose, dry

Table III. Averages of |r|s for Example 3

r �T
1X| OMT

x X �T
2X| OMT

x X �T
1Y| OMT

y Y �T
2Y| OMT

y Y

10 0.8943 0.9912 0.9992 0.8927
20 0.8918 0.9910 0.9992 0.8905
50 0.8827 0.9911 0.9992 0.8810
100 0.8623 0.9910 0.9992 0.8606
200 0.8307 0.9908 0.9988 0.8341

flour, and water were calculated from 72 biscuit samples. One set
of variables, saying Y 2 R4, is composed of this four ingredients.

For each sample, there was a wavelength observed by spec-
troscopy and 700 different points of it had been measured, range
from 1100 to 2498 nanometers (NM) at an interval of 2 nm.
From this data, the first 140 and the last 49 wavelengths were
removed in Brown et al. [11], because those figures hardly seemed
to contain the useful information, and increased the interval to
4 nm. Consequently, the wavelength had its bounds from 1380
to 2400nm with 256 points, representing another set of variables
X 2 R256.

The data were obtained from ppls-package of statistical
language R and is named cookie. Because the 23th and 61st
samples in the data set were suspected as outliers, they were
deleted from the data set before analysis.

Due to p = 256 > n = 72, it is clear that the standard CCA is not
applicable. Because r = 4 is reasonably small compared with n,
the first case of the seeded CCA in Section 3.2.1 was implemented.
Then OMx,0 was constructed through taking O†xy 2 R256�4 as a
seed matrix. The proper number of projection turned out to be
u* = 2 with simple graphical determination regarding the change
in ORu and ORu–1 (not reported).

This initialized CCA resulted in the replacement of the original
256-dimensional X by the four-dimensional OMT

x,0X. For notational

conveniences, let OMx,0i and OMx,0–i stand for the ith column of
OMx,0 and the OMx,0 after removing the ith column, respectively.

Similarly, OMy,0i
and OMy,0–i

are defined.
Next, to complete the CCA dimension reduction, the relation-

ship between OMT
x,0X and Y was inspected through in a scatter-

plot matrix in Figure 1a. The plot indicates that two pairs of
( OMT

x,01
X, Y1) and { OMT

x,0–1
X, (Y2, Y3, Y4)} have clear separation by

the relations within each pair and between pairs. Along with this
information, the finalized CCA was carried out with OMT

x,0X and Y,

and denote OMx 2 R4�4 and OMy 2 R4�4 as the finalized canonical
coefficient matrices for X and Y. To withdraw more information
on the relationship between OMT

y Y and Y, the scatterplot matrix
in Figure 1(b) was constructed. From the plot, it can be observed
that the first canonical variate OMT

y1
Y has strong linear relation-

ships with Y2, Y3 and Y4, while the second one OMT
y2

Y can be
thought of as Y1 itself.
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Figure 1. Scatterplot matrices for NIR data.
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Figure 2. Plots for CCA in nutrimouse data.

By the discussion, the two pairs of canonical variates of
( OMT

x1
X, OMT

y1
Y) and ( OMT

x2
X, OMT

y2
Y) should be concluded to be suf-

ficient to summarize the relation between Y and X. If one can
do further analysis to investigate how the percentages of the
four ingredient is changed given the wavelengths, s/he can apply
multivariate linear regression of ( OMT

y1
Y, OMT

y2
Y)|( OMT

x1
X, OMT

x2
X) .

4.2.2. Nutrimouse data

For the illustration purpose of the second case in Section 3.2.2,
nutrimouse data (Martin et al. [12]) was used. The data
were collected from a nutrigenomic study in 40 mouse (n =
40) by which investigated the effects of five regimens with
contrasted fatty acid compositions on liver lipids and hepatic
gene expression.

The following variables were used for two sets of variables: one
set X 2 R120 was expressions of 120 genes measured in liver cells,

acquired through microarray technology and selected among
about 30 000 as potentially useful in the nutrition study. The other
set Y 2 R21 was concentrations of 21 hepatic fatty acids (FA)
measured by gas chromatography. Additionally, the 40 mouse are
cross-classified based on two factors of genotype an diet: geno-
type: wild-type (WT) mice and PPARalpha deficient mice (PPAR);
diet: corn and colza oils (50/50, REF), hydrogenated coconut oil
for a saturated FA diet (COC), sunflower oil for !6 FA-rich diet
(SUN), linseed oil for !3-rich diet (LIN), and corn/colza/enriched
fish oils (42.5/42.5/15, FISH). The data are publicly available in the
mixOmics-package of statistical language R.

Because min(p, r) = 21 and was relatively larger compared with
n = 40, O�x 2 R120�m and O�y 2 R21�m of the eigenvectors corre-

sponding to the m largest eigenvalues O†yx and O†xy were used as
the seed matrices in the initialized CCA. By inspecting the scree
plot of O†xy , reported in Figure 2(a), it was determined that m = 4.
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Figure 3. Summary plots for nutrimouse data

Additionally, the sums of the first two largest and the first four
largest eigenvalues of O†xy accounts for 90.1% and 99.4% of the
total variablity, respectively. With O�x and O�y setting m = 4, the ini-

tialized CCA yielded OMT
x,0X and OMT

y,0Y, where OMx,0 2 R120�4 and

OMy,0 2 R21�4. Before the finalized CCA, the relation of OMT
x,0X and

OMT
y,0Y was investigated through a scatter plot matrix in Figure 2b.

The plot indicates that ( OMx,03 , OMx,04 )TX and ( OMy,03
, OMy,04

)TY are

redundant, and hence OMx,0 and OMy,0 were additionally reduced

to ( OMx,01 , OMx,02 ) 2 R120�2 and ( OMy,01
, OMy,02

) 2 R21�2. So, it was
concluded that two pairs of the canonical covariates could rep-
resent the relation of X and Y. At last, to have OMT

x X and OMT
y Y,

the CCA reduction was completed by the finalized CCA with
( OMx,01 , OMx,02 )TX and ( OMy,01

, OMy,02
)TY.

In Figure 3(a)–(d), the scatter plots of the first and second pairs
of the finalized canonical variates marked by genotype and diet
of mouse used are reported as summary. According to Figure 3(a)
and (c), the first canonical covariate is distinguished better by
genotype than the second one, while the latter is better grouped
for diet than the former in Figures 3(b) and (d).

5. Conclusion

Canonical correlation analysis is one of popular statistical
methodologies in multivariate analysis, especially, in studying
relation of two sets of variables. However, when sample sizes
are smaller than the maximum of the dimensions of two sets of
variables, it is plausible to implement canonical correlation anal-
ysis, because the sample covariance matrices are not invertible
in practice.

In this article, by adopting seeded dimension reduction, a two-
step canonical correlation procedure is proposed and is called
seeded canonical correlation analysis. In the first step, the dimen-
sions of the original two sets are initially reduced without losing
information on the canonical correlation analysis perspective.
Then, in the second step, the standard canonical correlation
application with the initially reduced sets is carried out to com-
plete the dimension reduction. Numerical studies confirm the
approach, and two real data analyses are presented for illustration
of the purpose.

It is believed that our works can make canonical corre-
lation analysis more fruitful as statistical methodologies in
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high-throughput data analysis. The codes for the seeded canon-
ical correlation analysis are publicly available on the following
website of the authors:
http://home.ewha.ac.kr/�yjkstat/publication.html.
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